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Abstract. For a function  [ ] 10,1,1 <<−∈ pLf p  with finitely many sign changes, Hu, Kopotun and Yu 

[5] construct a sequence of polynomials nn Pp ∈  which are copositive with f  and such that 

( ) ( )ppp nfpcpf 1, −≤− ϕω , where ( )pnf 1, −
ϕω  denotes the Ditzian-Totik modulus of continuity in pL  

metric. Also it was shown that this estimate is exact in the sense that if f  has at least one sign change 

then ϕω  can not be replaced by 2ω  if  10 << p . In this paper we first show that almost copositive 

approximation improves the rate to ( )pnf 12 , −
ϕω  from ( )pnf 1, −

ϕω  the rate for the ordinary copositive 

approximation. Our second theorem shows that it is impossible to obtain the first estimate interims of 

4
ϕω . 
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1. Introduction and definitions 

Let [ ]baLp ,  be the set of all measurable functions on [ ]ba,  such that 

[ ] ∞<
baLp

f
,

,  where   [ ] ( ) 10,:
/1

,
<<







= ∫ pdxxff
pb

a

p

baLp
.(see [1] p. 19-

24) 

Let nP  denote the set of all polynomials of degree n≤ , by N  the set 

of natural numbers. Thought this paper the notation ( )baCC ,=  denote 

constants that are depend only on ba,  and is independent of every thing 

else, and are not necessarily the same even if they occur in the same line. 

 For { }11021 11,,,,; +=<<<<−== ssss yyyyyyyY KK  . We denote by 

( )sY0∆  the set of all functions [ ]1,1−∈ pLf  such that ( ) ( ) 01 ≥− − xfks  for 

[ ] skyyx kk ,,2,1,0,, 1 K=∈ + , it mean every ( )sYf 0∆∈  has ∞<≤ s0  sign 

changes at the points in sY  and is nonnegative near I . A function g  is said 

to be copositive with f  if ( ) ( ) 0≥xgxf  for all [ ]1,1−∈x . 

 We are interested in coapproximation function from ( )sY0∆  by 

polynomials np  of degree n≤  that are copositive with f . For [ ]1,1−∈ pLf  

let  
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( )
pn

Pppn pffE
nn

−=
∈

inf: ,  

denote the degree of unconstrained approximation and let  

( )
( ) pn
YPp

psn pfYfE
snn

−=
∆∩∈ 0

inf:,0 , 

be the degree of copositive approximation to f  by algebraic polynomials 

of degree n≤ , where [ ]baLp p
ff

,
= . The degree of intertwining 

polynomial approximation of functions [ ]1,1−∈ pLf  with respect to sY  is 

given by 

( ) { ( )snppsn YfPPQPQPYfE 0,,:inf:,
~ ∆∈−∈−=  and ( )}sYQf 0∆∈− , 

We call { }QP,  an intertwining pair of polynomials for f  with respect to sY  

if ( )sYpffP 0, ∆∈−− .For more details see [7]. 

 We denote ( ) ( ) ( )[ ] [ ],1,1,, −∩∆+∆−=∈ ∈∈ nyynyynJ jnjjnjj  

K,1,0=j 1, +s  and denote ( ) ( )∈∪=∈ = ,, 1 nJYO j
s
jsn  and  

( ) ( )∈∪=∈ +
=

∗ ,, 1
0 nJYO j

s
jsn . If 0∈=  we shall also use the simpler notation  

( ),0,nJJ jj = ( ) ( )0,snsn YOYO =  and ( ) ( )0,snsn YOYO ∗∗ = . Functions f  and g  

are called copositive on [ ]1,1: −=⊂ IJ  if ( ) ( ) Jxxgxf ∈∀≥ 0 . Function f  

and g  are called almost copositive on I  with respect to sY  if they are 

copositive on ( )sn YOI ∗− . We say that f  and g  are strongly (weakly) 

almost copositive on  I   with respect to sY  if they are copositive on 
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( )∈− ,sn YOI   where ( )00 >< εε . In particular, if −∞=ε , then strongly 

almost copositive functions are just copositive. Define a function class 

( ) ( ) ( ) ( ){ 01::0 ≥−=∆− − xffYalm ks
snε  for ( )∈−∈ ∗ ,sn YOIx . 

If 0=s  it becomes: 

( ) ( ) ( )0
00 : Yalmalm nn ∆−=∆− εε  

                  ( ){ 0:: ≥= xff  for [ ]}εε +−+− −+−∈ 22 1,1 nnx , 

the set of all strongly (weakly) almost nonnegative functions on I  if 

( )00 >< εε . Again if 0=ε  we omit the letter ε   in the notation and use  

( ) ( )sn Yalm 0∆  and ( )0
nalm∆  the latter is the set of almost nonnegative 

functions on I  .  If −∞=ε , strongly almost nonnegative functions are just 

nonnegative. 

We define a function class: 

( ) ( ) ( ){ ( ) 01:0 ≥−=∆ − xffYalm ks
sn for ( )}sn YOIx ∗−∈ . The degree of almost 

copositive polynomial approximation of [ ] ( )sp YLf 01,1 ∆∩−∈  is 

( )( ) ( ) ( ){ }.:inf:,0
s

o
nnppsn YalmPppfalmYfE ∆∩∈−=  

Similarly, we define ( )( )psn almYfE −ε,0  the degree of strongly (weakly) 

almost copositive polynomial approximation of [ ] ( )sp YLf 01,1 ∆∩−∈   by 

means of ( ) ( )snn YalmPp 0∆−∩∈ ε . 
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It was shown by Hu, Kopotun and Yu [5] that if f  changes its sign 

in ( )1,1− , 1
ϕω  being the best order of approximation: 

Theorem A. If [ ] ( ) 101,1 0 <<∆∩−∈ pYLf sp  then for every  { }0−∈ Nn  

( ) ( ) ( )ppsn nfpcYfE 10 ,, −≤ ϕω . 

Also it was shown that: 

One can not replace ( )pnf 11 , −
ϕω  by ( )pnf 12 , −

ϕω  for 10 << p , where  

( ) ( ) [ ]( )
p

m
h

th
p

m ftf 1,1,,sup:, .
0

−⋅∆=
≤<

ϕϕω  

is the thm  Ditzian Totik modulus of smoothness with ( ) 21 xx −=ϕ  , and  

[ ]( ) ( ) 






 +−−












=−∆ −

=
∑ ihh

m
xf

i

m
xf im

m

i

m
h 2

1:1,1,,
0

 if [ ]


−∈± 1,1

2
h

m
x . 

Little is known about copositive and almost copositive approximation of 

functions in [ ] ( )sp YL 01,1 ∆∩−  for ∞<≤ p1  and 1≥s  and it seems that 

nothing is known in the case for 10 << p . It turns out that things  become 

more complicated in pL  . 

  Now the order 2
ϕω  is impossible, we seek for a best rate. Our 

theorem below shows that almost copositive approximation in 10, << pLp  

improves the rate to ( )pnf 12 , −
ϕω  from ( )pnf 11 , −

ϕω : 
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TheoremI. Suppose [ ] ( ) 101,1 0 <<∆∩−∈ pYLf sp  for any ( )sYcn >  we 

have 

                              ( )( ) ( ) ( )ppsn nfspcalmYfE 120 ,,, −≤ ϕω                          (1) 

 The following theorem and corollary show that (1) is exact for 

0<p<1, that is  

TheoremII. Let sY   be fixed. For any given 10,0 <<> pA  and sufficiently 

large Nn∈ , there exists a function [ ] ( )sYCf 01,1 ∆∩−∈  such that for 

every polynomial nn Pp ∈  which is copositive with f  on 






 −−−+
3

1
1,

3

1 ss
s

yy
y  the following inequality holds 

                                      ( )ppn nfAnpf 14 , −>− ϕ
βω                              (2) 

where 
2+

<
p

pβ . 

CorolaryIII. Let sY  be fixed. For any given 10 <≤ ε  and sufficiently large 

Nn∈ ,there exists [ ] ( )sYCf 01,1 ∆∩−∈   such that  

( )( ) ( ) ( ) .,,, 140
ppsn nfspacalmYfE −>− ϕωε  

 

 

2. Weak Copositive Approximation  
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 In this section we show in theorem I that weak almost copositive 

approximation in 10, << pLp  improves the rate to 2
ϕω  from 1

ϕω . We first 

need the following result from [6] : 

Lemma1. Let 0, ≥sYs  be given ∞<<+≥∈ pmNm 0,302,µ , and let 

( )xS  be a spline of an odd order 12 += mr  on the knot sequence 

( )sn YIi
i n

i
x

∈





 = π

cos  where ( )sYcn > is such that there are at least 4 knots ix  

in  each  interval  ( ) sjyy jj ,...,0,, 1 =+   and  ( ) { }\,...,1 nYI sn =  

{ }1,1, −<≤− iji xyxii  for some sj ≤≤1 . Then there exists an intertwining 

pair of polynomials{ } ( )nrcPPP ⊂21,  for S  with respect to sY  such that 

      { }( ) ( ) ,ˆˆ,,1min,,
1

1
1121

p

p

n

i
iir

pp

p
IISEpsrcPP ∑

−

=
+− ∪≤−  if ∞<< po       (3) 

where [ ].,ˆ
1−= iii xxI  

Also we need the following assertion in [4]  

Lemma 2. for any ( ) 10, <<∈ pILf p   and Nr ∈  we have  

( ) ( ) ( ) ., 1
p

r
pn nfpcfE −≤ ϕω  

Proof of theorem I. 

Note that  

( )( ) ( )p
sn

p
sn pp

YfEalmYfE ,
~

,0 ≤−ε  



 8

                         
p

p
PP 21 −≤ , where 21, PP  the polynomials defined in 

Lemma 1. Then Lemma 1 and Lemma 2 imply 

( )( ) ( ) ( )p

r

n

i

pp
sn

piip
IISEspcalmYfE ∗∗

−

−

=
+

∪≤− ∑ 1
,,, 1

1

1

0 ε . 

For ( ) 10, <<∈ pILf p  define a quadratic spline on  

( )sk YIi
isk k

i
xT

∈
−







 == π

cos2 , by ∫∑
∗

∗−
+

+−=
===

iI
i

k

ri
iii fdcNcTfS 1

1

1
,:  , ∗

i
d  is an 

absolute constant ∗
∗

∗
∗

∗∗












+−=

i

i

i

i

ii
t

d
t

d
tI ,

2
,

2
 is an auxiliary knots in [ ]1,1−  

(see [3], p. 223), to get  

( )( ) ( ) ( )pk

i

pp
sn

piip
IISEspcalmYfE ∗∗

−

=
+

∪≤− ∑ 1
,,, 2

1

1

0 ε  

                               ( ) ( )pk

i piiii
IIIIfspc ∗∗∗∗

−

=
++

∪∪≤ ∑ 11
,,, 2

1

1
ϕω  

                               ( ) ( ) .,, 12 p

p
nfspc −≤ ϕω   ☻ 

 

 

3. The counter example  

 In this section we construct the counter example described in 

Theorem II. We show that weakly almost copositive approximation doesn’t 
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do better than those Corollary III, in spite of larger intervals in which the 

restriction is relaxed. 

Proof of Theorem II  

 Let 2+≥ sn , ( ) ( )j

s

j

s yxb
y

xxL −Π













−







 +−=
=1

2
2

2

1
 where 

6

1 sy
b

−<  

is a constant, and let  

( ) ( )














 ++−+∉
=

otherewise

b
y

b
y

xifxL
xf

ss

0

6

1
,

6

1

 

suppose that (2) is true, it means there exists a polynomial  nn Pp ∈  such 

that ( ) 0≥xpn  for 




 +
+

−
+

∈ b
y

b
y

x ss

6

1
,

6

1
 and   

( )ppn nfAnpf 14 , −≤− ϕ
βω . Let us assume 0≥β . Note that 

( )
p

b
y

b
y

p

p

s

s

dxxLLf

/1

2

1

2

1 














=− ∫

+
+

−
+

, and since        
2

1

6

1 ss yy
b

+<+<  we have 

( ) p

p
bpcLf /12+=− , and  

( ) ( ) ( ) ( ) ( )
ppp

nLpcnLfpcnf 141414 ,,, −−− +−≤ ϕϕϕ ωωω  

                   ( ) ( ) ( )
p

LnpcLfpc
p

44−+−≤  

                   ( ) ( ) 4/12 −+ +≤ npcbpc p . 
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Also by the well known inequality in [2]  

[ ] ( )( ) [ ]baLk
p

baLk p
pabkpcp

,

/1

,
, −−≤

∞
, for  kk Pp ∈ , 

( ) 














 +−






 +≥− −

2

1

2

11 ss
npn

y
L

y
pnpcLp  

              ( ) 






 +−≥ −

2

11 sy
Lnpc  

              ( ) 






 −+Π=
=

−
j

s
s

j
y

y
bnpc

2

1
1

21  

              ( ) .21bnpc −≥  

Therefore 

( )
ppn Lffpbnpc −+−≤− 21  

                  ( ) ( ) p
p bpcnfAn /1214 , +− +≤ ϕ

βω  

                  ( ) ( ) ( ) pp bpcnpcbnpc /124/12 +−+ ++≤ β  

                  ( ) ( ) .4/12 −+ +≤ npcbnpc pβ  

This implies the inequality  

( ) ( ) .4/1221 −+− ≤− npcbnbnpc pβ  

Now let pnb
β−−

=
1

, then the last inequality implies 

( )pcnn ppp ≤−








+








−−−−

1
21

2
34

βββ

 

and 
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( ).
2

34

pcn p ≤
−−− ββ

 

But this can not be true for sufficiently large n , since condition on β  and 

p  in the theorem imply  βββ +++−>
p

1
2234 .  ☻ 
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